Electro-microbial production techno-economic viability and environmental implications

IO_AdminUncategorized1 month ago19 Views

  • Comment
  • Published:

Nature Biotechnology

(2025)Cite this article

Subjects

Producing goods, such as foods and fuels, with minimal environmental impacts is urgently needed. Although advances in bioproduction are promising, there is often a noticeable gap in our understanding of whether and where new processes can compete with existing methods on an economic and environmental basis. Transparent lower bound calculations from basic principles highlight potential benefits of producing foods, but not fuels, from electro-microbial production of biomass.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Data availability

The data used here are summarized in Supplementary Table 2 and can be found in the GitLab repository provided with this manuscript (https://gitlab.com/milo-lab-public/microbial-production-tea.git), together with details of data processing.

Code availability

The code used for the analysis has been deposited into GitLab (https://gitlab.com/milo-lab-public/microbial-production-tea.git).

References

  1. Järviö, N., Maljanen, N.-L., Kobayashi, Y., Ryynänen, T. & Tuomisto, H. L. Sci. Total Environ. 776, 145764 (2021).

    Article 
    PubMed 

    Google Scholar
     

  2. Graham, A. E. & Ledesma-Amaro, R. Nat. Commun. 14, 2231 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Keasling, J. et al. Nat. Rev. Microbiol. 19, 701–715 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  4. Al Rowaihi, I. S. et al. PLoS One 13, e0196079 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  5. Pham, J. V. et al. Front. Microbiol. 10, 1404 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  6. Poore, J. & Nemecek, T. Science 360, 987–992 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  7. International Energy Agency. From taking stock to taking action: how to implement the COP28 energy goals. https://www.iea.org/reports/from-taking-stock-to-taking-action (2024).

  8. Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Nat. Catal. 2, 437–447 (2019).

    Article 
    CAS 

    Google Scholar
     

  9. Leger, D. et al. Proc. Natl. Acad. Sci. USA 118, e2015025118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Joule 6, 2057–2082 (2022).

    Article 

    Google Scholar
     

  11. García Martínez, J. B. et al. Sustain. Prod. Consum. 25, 234–247 (2021).

    Article 
    PubMed 

    Google Scholar
     

  12. World Integrated Trade Solution. Inactive yeasts; other single-cell micro-organi exports by country in 2023. https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Exports/partner/WLD/product/210220 (World Bank, accessed 12 August 2024).

  13. World Bank. World Bank commodity price data (the Pink Sheet). https://www.worldbank.org/en/research/commodity-markets (accessed 21 January 2025).

  14. Fagerbakke, K. M., Heldal, M. & Norland, S. Aquat. Microb. Ecol. 10, 15–27 (1996).

    Article 

    Google Scholar
     

  15. Amadei, A. M., De Laurentiis, V. & Sala, S. J. Clean. Prod. 329, 129668 (2021).

    Article 

    Google Scholar
     

  16. Nappa, M. et al. ACS Omega 5, 33242–33252 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  17. Finnigan, T., Needham, L. & Abbott, C. in Sustainable Protein Sources (eds. Nadathur, S. R., Wanasundara, J. P. D. & Scanlin, L.) 305–325 (Academic, 2017); https://doi.org/10.1016/B978-0-12-802778-3.00019-6

  18. Biddy, M. J., Scarlata, C. & Kinchin, C. Chemicals from biomass: a market assessment of bioproducts with near-term potential. https://doi.org/10.2172/1244312 (National Renewable Energy Laboratory, 2016).

  19. Gautam, M. et al. Repurposing agricultural policies and support: options to transform agriculture and food systems to better serve the health of people, economies, and the planet. http://hdl.handle.net/10986/36875 (World Bank Group, 2022).

  20. Alexander, P. et al. Agric. Syst. 153, 190–200 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  21. Food and Agriculture Organization of the United Nations. Gross domestic product and agriculture value added 2012–2021: global and regional trends. https://doi.org/10.4060/cc5253en (2023).

  22. United Nations Economic Commission for Europe. Carbon Neutrality in the UNECE Region: Integrated Life-cycle Assessment of Electricity Sources (United Nations, 2022); https://doi.org/10.18356/9789210014854

  23. Hertwich, E. G. et al. Proc. Natl. Acad. Sci. USA 112, 6277–6282 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  24. Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Renew. Sustain. Energy Rev. 115, 109391 (2019).

    Article 

    Google Scholar
     

  25. Hiete, M., Berner, U. & Richter, O. Glob. Biogeochem. Cycles 15, 169–181 (2001).

    Article 
    CAS 

    Google Scholar
     

Download references

Acknowledgements

We would like to thank Lior Greenspoon, Gidon Eshel, Tamar Makov, Silvio Matassa, Charlie Cotton, Jan Lukas Krüsemann, Niklas Stolz, Yuval Rosenberg, William Newell, Milena Ivanisevic and the many other people we spoke with for their invaluable insights and support on this manuscript. This research was supported by the Tom and Mary Beck Center for Renewable Energy as part of the Institute for Environmental Sustainability (IES) at the Weizmann Institute of Science. R.M. holds the Charles and Louise Gartner Professorial Chair.

Author information

Authors and Affiliations

  1. Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel

    Samuel J. Lovat, Roee Ben-Nissan, Eliya Milshtein, Elad Noor & Ron Milo

  2. School of Sustainability, Reichman University, Herzliya, Israel

    Asaf Tzachor

  3. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA

    Avi Flamholz

  4. Cx Bio, Luxembourg, Luxembourg

    Dorian Leger

Corresponding author

Correspondence to
Ron Milo.

Ethics declarations

Competing interests

R.B.-N., E.N. and R.M are inventors on patent applications related to microbial production. D.L. is the co-founder of Cx Bio. The other authors declare no competing interests.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovat, S.J., Ben-Nissan, R., Milshtein, E. et al. Electro-microbial production techno-economic viability and environmental implications.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02632-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02632-w

Read More

0 Votes: 0 Upvotes, 0 Downvotes (0 Points)

Leave a reply

Recent Comments

No comments to show.

Stay Informed With the Latest & Most Important News

I consent to receive newsletter via email. For further information, please review our Privacy Policy

Advertisement

Loading Next Post...
Follow
Sign In/Sign Up Sidebar Search Trending 0 Cart
Popular Now
Loading

Signing-in 3 seconds...

Signing-up 3 seconds...

Cart
Cart updating

ShopYour cart is currently is empty. You could visit our shop and start shopping.