Metabolomics
(2025)Cite this article
A self-supervised approach to learning from 24 million spectra generates a foundation model for detecting and characterizing small molecules by tandem mass spectrometry.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
195,33 € per year
only 16,28 € per issue
Buy this article
Prices may be subject to local taxes which are calculated during checkout
Bushuiev, R. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02663-3 (2025).
Elias, J. E. & Gygi, S. P. Nat. Methods 4, 207–214 (2007).
Bittremieux, W., Wang, M. & Dorrestein, P. C. Metabolomics 18, 94 (2022).
Huber, F., van der Burg, S., van der Hooft, J. J. J. & Ridder, L. J. Cheminform. 13, 84 (2021).
Goldman, S. et al. Nat. Mach. Intell. 5, 965–979 (2023).
Vaswani, A. et al. In Advances in Neural Information Processing Systems 30 (eds von Luxburg, U. et al.) 5999–6009 (Curran Associates, 2018).
Wang, M. et al. Nat. Biotechnol. 34, 828–837 (2016).
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Long and Short Papers) (eds. Burstein, J. et al.) 4171–4186 (ACL, 2019).
Bittremieux, W., May, D. H., Bilmes, J. & Noble, W. S. Nat. Methods 19, 675–678 (2022).
Yilmaz, M., Fondrie, W. E., Bittremieux, W., Oh, S. & Noble, W. S. De novo mass spectrometry peptide sequencing with a transformer model. In Proc. 39th International Conf. on Machine Learning – ICML ’22 (eds Chaudhuri, K. et al.) 25514–25522 (PMLR, 2022).
The authors declare no competing interests.
Bittremieux, W., Noble, W.S. Self-supervised learning from small-molecule mass spectrometry data.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02677-x
Published:
DOI: https://doi.org/10.1038/s41587-025-02677-x