Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing

AdminUncategorized2 months ago36 Views

Data availability

The sequencing data for the CASTLE panel produced in this study are openly available at NCBI SRA BioProject PRJNA1086849. Sequencing of the clinical samples is under controlled access and is available through dbGaP study phs002529. Individual accession codes of SRA and dbGaP datasets are provided in Supplementary Table 2 and at https://github.com/CASTLE-Panel/castle. The outputs of all tools, evaluations and command line scripts are available at Zenodo at https://doi.org/10.5281/zenodo.10856827 (ref. 74). The hg38 reference genome is available via NCBI (GCF_000001405.26). The 1000 Genomes Vienna SV panel is available at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1KG_ONT_VIENNA/release/v1.0/delly-unfiltered-hg38/. Accession codes and references for publicly available datasets (COLO829, HCC1395, HG002, CHM1 and CHM13) are available in Supplementary Table 2.

Code availability

References

  1. Cosenza, M. R., Rodriguez-Martin, B. & Korbel, J. O. Structural variation in cancer: role, prevalence, and mechanisms. Annu. Rev. Genomics Hum. Genet. 23, 123–152 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  2. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  5. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  6. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

  7. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2015).

    Article 
    PubMed 

    Google Scholar
     

  8. Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  9. Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Fan, X., Abbott, T. E., Larson, D. & Chen, K. BreakDancer: identification of genomic structural variation from paired-end read mapping. Curr. Protoc. Bioinformatics 45, 15.6.1–15.6.11 (2014).

    Article 
    PubMed 

    Google Scholar
     

  12. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  13. Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38, 1347–1355 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  14. Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. Zarate, S. et al. Parliament2: accurate structural variant calling at scale. Gigascience 9, giaa145 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  17. Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).

  18. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Lin, J.-H., Chen, L.-C., Yu, S.-C. & Huang, Y.-T. LongPhase: an ultra-fast chromosome-scale phasing algorithm for small and large variants. Bioinformatics 38, 1816–1822 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  21. Mahmoud, M., Doddapaneni, H., Timp, W. & Sedlazeck, F. J. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biol. 22, 268 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  23. Sakamoto, Y. et al. Long-read sequencing for non-small-cell lung cancer genomes. Genome Res. 30, 1243–1257 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. Sakamoto, Y. et al. Phasing analysis of lung cancer genomes using a long read sequencer. Nat. Commun. 13, 3464 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. Fujimoto, A. et al. Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med. 13, 65 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  26. Rausch, T. et al. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. Cell Genom. 3, 100281 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. Rossi, N. M. et al. Extrachromosomal amplification of human papillomavirus episomes is a mechanism of cervical carcinogenesis. Cancer Res. 83, 1768–1781 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  28. Zhou, L. et al. Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nat. Commun. 13, 2563 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  29. Akagi, K. et al. Intratumoral heterogeneity and clonal evolution induced by HPV integration. Cancer Discov. 13, 910–927 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  30. Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Aganezov, S. & Raphael, B. J. Reconstruction of clone- and haplotype-specific cancer genome karyotypes from bulk tumor samples. Genome Res. 30, 1274–1290 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  32. Shale, C. et al. Unscrambling cancer genomes via integrated analysis of structural variation and copy number. Cell Genom. 2, 100112 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  33. Choo, Z.-N. et al. Most large structural variants in cancer genomes can be detected without long reads. Nat. Genet. 55, 2139–2148 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  34. Shiraishi, Y. et al. Precise characterization of somatic complex structural variations from tumor/control paired long-read sequencing data with nanomonsv. Nucleic Acids Res. 51, e74 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  35. Elrick, H. et al. SAVANA: reliable analysis of somatic structural variants and copy number aberrations in clinical samples using long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.604944 (2024).

  36. Park, J. et al. DeepSomatic: accurate somatic small variant discovery for multiple sequencing technologies. Preprint at bioRxiv https://doi.org/10.1101/2024.08.16.608331 (2024).

  37. O’Neill, K. et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. Cell Genom. 4, 100674 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  38. Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  39. Lee, Y. & Lee, H. Integrative reconstruction of cancer genome karyotypes using InfoGenomeR. Nat. Commun. 12, 2467 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  40. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  42. Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat. Methods 20, 408–417 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  43. Denti, L., Khorsand, P., Bonizzoni, P., Hormozdiari, F. & Chikhi, R. SVDSS: structural variation discovery in hard-to-call genomic regions using sample-specific strings from accurate long reads. Nat. Methods 20, 550–558 (2022).

    Article 
    PubMed 

    Google Scholar
     

  44. Wang, S. et al. De novo and somatic structural variant discovery with SVision-pro. Nat. Biotechnol. 43, 181–185 (2024).

  45. Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  46. Kolmogorov, M. et al. Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  47. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  48. Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  49. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  50. Steinberg, K. M. et al. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  51. Espejo Valle-Inclan, J. et al. A multi-platform reference for somatic structural variation detection. Cell Genom. 2, 100139 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  52. Velazquez-Villarreal, E. I. et al. Single-cell sequencing of genomic DNA resolves sub-clonal heterogeneity in a melanoma cell line. Commun. Biol. 3, 318 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  53. Paulin, L. F. et al. The benefit of a complete reference genome for cancer structural variant analysis. Preprint at medRxiv https://doi.org/10.1101/2024.03.15.24304369 (2024).

  54. Fang, L. T. et al. Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing. Nat. Biotechnol. 39, 1151–1160 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  55. Talsania, K. et al. Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies. Genome Biol. 23, 255 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  56. McDaniel, J. H. et al. Development and extensive sequencing of a broadly-consented Genome in a Bottle matched tumor–normal pair. Preprint at bioRxiv https://doi.org/10.1101/2024.09.18.613544 (2024).

  57. Zhao, Q. et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA 106, 1886–1891 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  58. Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  59. Schloissnig, S. et al. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 Genomes Project. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590093 (2024).

  60. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  61. Peterson, J. F. et al. Acute leukemias harboring KMT2A/MLLT10 fusion: a 10-year experience from a single genomics laboratory. Genes Chromosomes Cancer 58, 567–577 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  62. Lansdon, L. A. et al. Successful classification of clinical pediatric leukemia genetic subtypes via structural variant detection using HiFi long-read sequencing. Preprint at medRxiv https://doi.org/10.1101/2024.11.05.24316078 (2024).

  63. Pollard, J. A. et al. Gemtuzumab ozogamicin improves event-free survival and reduces relapse in pediatric KMT2A-rearranged AML: results from the phase III Children’s Oncology Group Trial AAML0531. J. Clin. Oncol. 39, 3149–3160 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  64. van Belzen, I. A. E. M. et al. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Cell Genom. 4, 100675 (2024).

  65. Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genetics 54, 1376–1389 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  66. Kazantseva, E., Donmez, A., Frolova, M., Pop, M. & Kolmogorov, M. Strainy: phasing and assembly of strain haplotypes from long-read metagenome sequencing. Nat. Methods 21, 2034–2043 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  67. Cohen, A. S. A. et al. Genomic answers for children: dynamic analyses of >1,000 pediatric rare disease genomes. Genet. Med. 24, 1336–1348 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  68. Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at bioRxiv https://doi.org/10.1101/085050 (2016).

  69. Alekseyev, M. A. & Pevzner, P. A. Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19, 943–957 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  70. Malhotra, A. et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 23, 762–776 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  71. Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  72. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  73. Magi, A. et al. GASOLINE: detecting germline and somatic structural variants from long-reads data. Sci. Rep. 13, 20817 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  74. Keskus, A., Bryant, A. & Kolmogorov, M. Supporting data for the manuscript ‘Severus: accurate detection and characterization of somatic structural variation in tumor genomes using long reads’. Zenodo https://doi.org/10.5281/zenodo.14541057 (2024).

  75. Keskus, A. et al. KolmogorovLab/Severus: a tool for somatic structural variant calling using long reads. GitHub https://github.com/KolmogorovLab/Severus (2024).

  76. Bryant, A. et al. KolmogorovLab/minda. GitHub https://github.com/KolmogorovLab/minda (2024).

Download references

Acknowledgements

The work was supported, in part, by the Intramural Research Program of the National Institutes of Health (NIH). This work used the computational resources of the NIH High-Performance Computing Biowulf cluster (http://hpc.nih.gov). ONT sequencing of the HCC1395 cell line was supported by the National Cancer Institute of the NIH under award number U01CA253405. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We would like to thank the participants and families who donated their samples for this research. M.S.F. and E.G. would like to thank Braden’s Hope for Childhood Cancer, Elizabeth and Monte McDowell, the Black & Veatch Foundation, Curing Kids Cancer and Big Slick for their generous support. M.S.F., E.G. and L.A.L. would also like to thank Children’s Mercy Oncology Biorepository study personnel, including J. Vun, A. Hatfield and R. Ryan, as well as J. Seymour and K. Sanders in the Children’s Mercy Research Institute Biorepository for their assistance with sample collection and processing and M. Gibson, A. Walter and L. Puckett in the Children’s Mercy Research Institute Genomics Core for their assistance with sequencing. Y.L. is funded by the NCI-UMD Partnership Program. E.K.M. was supported by the State of Maryland. B.P. was supported by the NHGRI under award numbers R01HG010485, U01HG013748, U24HG011853, U24HG010262 and U41HG010972 and NIH award OT2OD033761. K.H.M. was supported by NIH/NHGRI R01HG011274. We thank A. Liss for creating the broadly consented pancreatic cancer cell line HG008-T. We thank J. McDaniel, V. Patel, N. Olson, J. Wagner and J. Zook at NIST and C. Xiao at NCBI for providing guidance and documentation for using the HG008 data and the GIAB Consortium for releasing all data publicly without embargo. The chromosome illustrations in Figs. 5 and 6 and Extended Data Figs. 7 and 8 were created using BioRender (https://BioRender.com/z86y662). We acknowledge the Gurobi team for providing an academic license free of charge.

Author information

Authors and Affiliations

  1. Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

    Ayse G. Keskus, Asher Bryant, Tanveer Ahmad, Anton Goretsky, Ataberk Donmez, Yuelin Liu, Xiwen Cui, Salem Malikic, Chi-Ping Day, Cenk Sahinalp & Mikhail Kolmogorov

  2. Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA

    Byunggil Yoo, Lisa A. Lansdon, Chengpeng Bi, Adam Walter, Margaret Gibson, Irina Pushel, Erin Guest, Tomi Pastinen & Midhat S. Farooqi

  3. Oxford Nanopore Technologies, New York, NY, USA

    Sergey Aganezov

  4. Department of Computer Science, University of Maryland, College Park, MD, USA

    Anton Goretsky, Ataberk Donmez, Yuelin Liu & Erin K. Molloy

  5. Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA

    Isabel Rodriguez, Kishwar Shafin & Michael Dean

  6. University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA

    Jimin Park, Joshua Gardner, Brandy McNulty, Samuel Sacco, Karen H. Miga & Benedict Paten

  7. Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

    Jyoti Shetty & Bao Tran

  8. Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

    Yongmei Zhao

  9. New York Genome Center, New York, NY, USA

    Giuseppe Narzisi, Adrienne Helland & Nicolas Robine

  10. Google, Inc., Mountain View, CA, USA

    Daniel E. Cook, Pi-Chuan Chang, Alexey Kolesnikov & Andrew Carroll

Contributions

A.G.K., A.B. and M.K. conceived the overall methods design, analyzed the data, coordinated activities from coauthors and wrote the first draft of the paper. A.G.K. developed Severus. A.B. developed Minda. T.A., S.A., A.G., A.D. I.R., Y.L., S.M., E.K.M., C.-P.D., C.S. and M.D. contributed additional data analysis and algorithm conceptualization. I.R., J.P., Y.L., X.C., S.M., C.-P.D., C.S. and M.D. tested and validated Severus results on an orthogonal set of samples. J.G., B.M., S.S., J.S., Y.Z., B.T., D.E.C., P.-C.C., A.K., A.C., K.S., K.H.M. and B.P. contributed multitechnology cell line panel sequencing and data analysis. G.N., A.H. and N.R. contributed additional HCC1395 ONT sequencing. S.A. contributed COLO829 ONT sequencing and analysis. B.Y., L.A.L., I.P., E.G., C.B., A.W., M.G., T.P. and M.S.F. contributed clinical sample sequencing and analysis. M.K. supervised the work. All authors revised the paper.

Corresponding author

Correspondence to
Mikhail Kolmogorov.

Ethics declarations

Competing interests

S.A. is an employee and stockholder of ONT. A.K., P.C., K.S., D.C. and A.C. are employees of Google and own Alphabet stock as part of the standard compensation package. E.G. served on advisory boards for Jazz Pharmaceuticals and Syndax Pharmaceuticals. M.S.F. is part of the speakers bureau for Bayer and PacBio. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Q. Chris Liu, Kai Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskus, A.G., Bryant, A., Ahmad, T. et al. Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02618-8

Read More

0 Votes: 0 Upvotes, 0 Downvotes (0 Points)

Leave a reply

Recent Comments

No comments to show.

Stay Informed With the Latest & Most Important News

I consent to receive newsletter via email. For further information, please review our Privacy Policy

Advertisement

Loading Next Post...
Follow
Sign In/Sign Up Sidebar Search Trending 0 Cart
Popular Now
Loading

Signing-in 3 seconds...

Signing-up 3 seconds...

Cart
Cart updating

ShopYour cart is currently is empty. You could visit our shop and start shopping.